The features and benefits of Hytec Automotive Group's high quality shock absorbers:

  • TS-16949 Certified
  • All Components Needed for a 'No-Worry' Installation:
    Complete, Fast and Easy Installation
  • Components are New and Assembled to Consistent Standards
  • Spring Height Set and Compressed to Specific Vehicle Specifications
  • Aligned, Oriented and Top Mount Locked

Shock Absorber

A mechanical device designed to smooth out or damp shock impulse, and dissipate kinetic energy. It is a type of dashpot.

Nomenclature

The device's name in common parlance (among the general public and auto mechanics) is shock absorber or simply shock. Technical names include damper and dashpot. During the early 20th century in the U.S., the then-well-known Houdaille brand (pronounced WHO-dye) was in some places a genericized trademark for the device, but has since disappeared from use.

Description

Pneumatic and hydraulic sho Shock absorbers include cushions and springs.

Explanation

The shock absorber's function is to absorb or dissipate energy. One design consideration, when designing or choosing a shock absorber, is where that energy will go. In most dashpots, energy is converted to heat inside the viscous fluid. In hydraulic cylinders, the hydraulic fluid heats up, while in air cylinders, the hot air is usually exhausted to the atmosphere. In other types of dashpots, such as electromagnetic types, the dissipated energy can be stored and used later. In general terms, shock absorbers help cushion vehicles on uneven roads.

Applications

Shock absorbers are an important part of automobile and motorcycle suspensions, aircraft landing gear, and the supports for many industrial machines. Large shock absorbers have also been used in structural engineering to reduce the susceptibility of structures to earthquake damage and resonance. A transverse mounted shock absorber, called a yaw damper, helps keep railcars from swaying excessively from side to side and are important in passenger railroads, commuter rail and rapid transit systems because they prevent railcars from damaging station platforms. The success of passive damping technologies in suppressing vibration is demonstrated by its market size - around US $4.5 billion.

Vehicle suspension

In a vehicle, shock absorbers reduce the effect of traveling over rough ground, leading to improved ride quality and increase in comfort. While shock absorbers serve the purpose of limiting excessive suspension movement, their intended sole purpose is to dampen spring oscillations. Shock absorbers use valving of oil and gasses to absorb excess energy from the springs. Spring rates are chosen by the manufacturer based on the weight of the vehicle, loaded and unloaded. Some people use shocks to modify spring rates but this is not the correct use. Along with hysteresis in the tire itself, they dampen the energy stored in the motion of the unsprung weight up and down. Effective wheel bounce damping may require tuning shocks to an optimal resistance. Spring-based shock absorbers commonly use coil springs or leaf springs, though torsion bars are used in torsional shocks as well. Ideal springs alone, however, are not shock absorbers, as springs only store and do not dissipate or absorb energy. Vehicles typically employ both hydraulic shock absorbers and springs or torsion bars. In this combination, "shock absorber" refers specifically to the hydraulic piston that absorbs and dissipates vibration.